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ABSTRACT

The relationship between beam coupling losses in multiple beam antennas and

pattern parameters such as beamwidth and sidelobe level is investigated. A computer

algorithm to calculate the coupling coefficients for arbitrary number of beams is

implemented using MATLAB. Gain-loss data for various array amplitude distributions

is presented.
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I. INTRODUCTION

An important component of all communications, radar, and electronic warfare

systems utilizing the radio-frequency portion of the electromagnetic spectrum is the

antenna. The antenna is a transition structure that serves to minimize the signal loss

between a guiding structure and the transmission medium. It must efficiently radiate

power when transmitting and efficiently collect power when receiving, and is usually

called upon to give directional information as well. With so much reliance on the

electromagnetic spectrum for detection, targeting, and communications, it is imperative

that technical personnel understand the roles and design constraints of antennas.

There are three principal types of antenna systems in use:

1. Reflectors

2. Lenses

3. Arrays

Although multiple beams can be formed using any of these antennas, the analysis

presented here will concentrate on arrays. An array is simply a collection of small

antennas, generating a directional beam using constructive and destructive interference

[Ref. 1 :p. 204]. Array antennas are widely used in radar, and

communications applications. Naval applications include the AN/SPY-1 radar for the

AEGIS system, the AN/AWG-9 F-14 radar, and the receive multiple beam antennas for
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the AN/SLQ-32 electronic warfare system. Additionally, a conventional reflector

monopulse radar consists of a 4 feed horn assembly arranged in a planar array.

Arrays are particularly well suited to the radar role for the following reasons:

1. High data rates are possible with electronic beam scanning.

2. Multiple beams can be generated.

3. Lower sidelobe levels are possible for Low Probability of Intercept Radar
(LPIR).

4. Solid State technology can be efficiently utilized.

Before array technology, increasing directivity meant increasing the electrical size of the

antenna relative to the wavelength of the transmitted signal. The problem of increasing

the electrical size of an antenna was particularly exacerbated at lower frequencies. Arrays

were necessitated since it was not feasible to generate a single element with the required

dimensions. For example, at a frequency of 30 Megahertz (MHz), the corresponding

wavelength is 10 meters (- 30 ft). A two wavelength antenna would be 60 feet long.

Alternatively, the same directivity could be obtained using 2 or 3 quarter wavelength

antennas each 2.5 meters long as an array, with half-wavelength spacing. The efforts of

pioneers like Schelkunoff led to new advances in antenna design using array techniques

and polynomial methods.

In addition to electronically scanning the array with a single beam, it may be

advantageous to receive multiple beams simultaneously. Multiple beam antennas offer the

capability to scan sectors rapidly with little reduction in antenna gain. As mentioned,
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many systems currently in use by the United States Navy take advantage of multiple

beam antenna technology, including the AN/SPY-I radar, the AN/SPS-48 radar, and the

AN/SLQ-32 Electronic Warfare suite.

The desire to optimize multiple beam systems has led to new synthesis techniques.

Advances in computing ability and efficiency have led to various methods for generating

multiple receive beams. These beam forming networks, with a matrix interpretation are

well suited for implementation using array elements as

feeds.[Ref. 2:p. 241] The advantages offered by phased array radar

systems (fast scanning, low sidelobes, ECCM capability) combine with the advantages

of multiple beam systems to further enhance overall system performance. Currently, most

modem systems that employ multiple beam antennas rely on some type of array to

implement the design.

A. MOTIVATION

High performance radar systems need narrow "agile" beams to accurately track

targets. Many simultaneous beams are desired to track multiple targets. The necessity for

high data rates common to most current weapons control systems makes electronic beam

scanning necessary (as opposed to mechanical beam scanning). Given that premise,

phased array antennas are the antennas of choice in most of these new systems.

Recent advances in Monolithic Microwave Integrated Circuits (MMIC) technology

have expanded the number of RF components available in a small package. Currently,

emphasis has been placed on integrating all of the RF devices necessary for a system (i.e.

3



phase shifters, radiating elements, low noise amplifiers, etc.) onto a single substrate.

These technological advances have produced compact arrays with a large number of

multiple beams.

B. PROBLEM STATEMENT

Intuitively, we would expect interaction between the various beams in a multiple

beam system. For example, if one of the beam ports is excited, some of the energy will

couple to the remaining beam ports and appear as a received signal. This coupled reaergy

results in a loss in gain that would not be present if the antenna only had a single beam,

and occurs even if there is perfect isolation between the beam feeds. This interaction has

been investigated by many researchers, most notably Seymour

Stein.[Ref. 3 :p. 548] These beam coupling losses are an important

consideration in the design and analysis of multiple beam antennas. There is a tradeoff

between these losses and the beam crossover level. High crossover (i.e. closely spaced

beams) are particularly desirable from a systems perspective. However, the beam

coupling losses at these crossover levels may be excessive. In receive antennas, an

adequate signal-to-noise ratio is maintained using low noise amplifiers (LNA's). The

location of the amplifiers in the antenna feed and their required gain are influenced by

the beamforming losses. Thus prediction of the beam coupling losses is essential as the

number of multiple beams, and the crossover level increases. Figure 1 shows the

radiation pattern for a typical multiple beam antenna array using a Taylor distribution

4
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with 25 dB sidelobes and n=5. In this figure, there are 3 beams and the beams

crossover at the 3 dB point.

C. APPROACH

Typically, beam coupling losses are estimated from curves such as those by Stein

or from crude estimates obtained by considering only two beams and extrapolating to a

higher number of beams. These techniques are effective for a few beams, but accuracy

rapidly drops as the number of beams increases. Once an antenna development model is

available, beam coupling losses can be measured, but this technique is costly and time

consuming.

Stein has formulated the loss calculation in terms of a cross correlation integral and

antenna scattering parameters. His formulation has reduced the problem to solving a

matrix eigenvalue equation. Flexible software computing packages such as MATLAB

or MATHEMATICA7 can be used to solve the equations for a wide range of geometry

and excitation with a single algorithm.

The goal of this thesis is to compute the beam coupling losses in a multiple beam

linear array as a function of the number of array elements, the element spacing, the beam

crossover level, and the sidelobe level. For computational convenience it is assumed that

the excitation coefficients for all beams are the same (the case of identical beams).

6



D. CHAPTER OVERVIEW

A breakdown of contents by chapter is provided here.

Chapter II lays the requisite mathematical foundation in antenna theory and gives

a derivation of the fundamental relationships in array design.

Chapter HI gives the mathematical foundation of the theory of beam coupling losses

using a scattering matrix representation. The adaptation of Stein's work to linear arrays

is also presented.

Chapter IV presents the summary of the calculated data for the two and four beam

cases, and looks at the relationship between beam coupling losses for a given geometry

and the number of beams.

Chapter V summarizes the work performed and gives the conclusions.

Analytical details, raw data, and computer source codes are included in the

appendices.
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II. ARRAY FUNDAMENTALS

One definition of an array is "... an assembly of radiating elements in an electrical

and geometrical configuration."[Ref. l:p. 204] Arrays produce radiation patterns using

the principles of constructive and destructive interference. Destructive interference is

used to suppress radiation in unwanted directions. The interference patterns are a function

of the weighting of the individual elements. The weighting can in general be complex,

and determines the beamwidth, sidelobe level, and scan direction

[Ref. 4:p. 1]. The design parameters that influence the characteristics of

the radiation pattern are:

1. geometrical configuration,

2. relative element separation,

3. element amplitude weight,

4. element phase weight,

5. radiating element pattern [Ref. 1:pp.204-205].

Maxwell's equations are used to derive the expression for the radiation pattern.

Two assumptions that apply to antenna problems are

1. All quantities have a time-harmonic dependence. Phasor notation will be used
with the es suppressed.

2. Antenna surfaces are perfect electrical conductors (i.e., only J*).
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The electric field at a field point P(x,y,z) due to the current !.(x',y',z') can be expressed

as [Ref. 1:pp.86-91]

i(x,yz) = -jc, - V(V .A), (1)O Po t

where

X(x~yz) = ±O fsf j(xly•z') e-j"r dsl-
4n = r (2)

r -- &(-xf + (y-yf + (•-zJ

S denotes all of the antenna surfaces; for an array it becomes a collection of identical

discrete surfaces. Combining (1) and (2) and simplifying leads to the expression for the

electric field

47 lij(s r (L)Co r J
In the far field R--oo, and the second term in (3) can be neglected since it will involve

terms decreasing as /R2 and /R3 . Using the geometry of Figure 2, and making the far-

field approximation that i and r are parallel gives Ir Ii[ -R' -. The electric field

at P becomes

=(X ) J (0 R j.e ikfAf A d (4)
47CR JJS

where ii is a unit vector in the direction of point P.
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Now that the expression for the electric field has been derived, it is necessary to

extend this result to multiple elements. Consider an array consisting of N identical

surfaces, and define a reference element with surface So as shown in Figure 3. The

expression for the electric field of the array can be written as

A(X'y'Z) = -~ IL-ekRE Ciffp;0  (.A)ei[1 4 dI(5
4irR L1 6.S T. ]'+I 5

where ci is a complex constant that relates the current on the ith element (I,) to the

current on the reference element (T.). By factoring the complex exponential term in the

integral, (5) can be rewritten as

g(x,y~z) [ jJA] ie ' Lgo je-ikooff [f (f k4'A(6)

- (AF) (EF)

From (6), it can be seen that the total radiation pattern for the array is the product of the

element radiation pattern (EF) and the array factor (AF, the term involving the

summation). This is known as the principle of Pattern Multiplication.

For radar applications, the antenna gain, beamwidth, and sidelobe level are all

important design parameters. High gain increases radar range and a narrow beam

improves target resolution. However, low sidelobe levels have currently become a

priority for clutter reduction and electronic counter counter-measures (ECCM).

Unfortunately, low sidelobes are achieved at the expense of both gain and beamwidth.

Thus, there is a relationship between beamwidth, sidelobe level, and gain that forms a

11
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classic engineering tradeoff. The sidelobe level is set by the proper choice of the

magnitude of the constants, ct. Table 1 gives a comparison between the beamwidth and

sidelobe level of several commonly used amplitude windows.

TABLE 1. BEAMWIDTH - SIDELOBE COMPARISON

Window (1I1, =a) Sidelobe Level (dB) HPBW (XVL)

Uniform -13.2 .886

Cosine -23.0 1.188

Taylor (20 dB n-=4) -20.0 1.130

Hamming -42.0 j 1.302

The Taylor weighting is used extensively in radar applications, and is specified by two

parameters: sidelobe level (SLL) and n. For a given sidelobe level, it offers minimum

beamwidth. Once either gain or SLL is specified, the other quantity is established. [Ref.

1 :p.680]

Thus far only the effects of amplitude weighting the array elements have been

discussed. However, as stated previously, the element weighting can be complex. The

effects of phase weighting will now be addressed. Let the N isotropic radiators lie along

the z-axis with element spacing d as shown in Figure 4. According to (6), the array

factor is the linear superposition of the contributions of each individual element. In terms

of the quantities in Figure 4, the array factor is

13
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N÷ 1
N J(kdowe + P)(n - -- (7)

AF(O,s) = Ea.e 2(7

M-1

Implicit in equation (7) is the representation of the complex weights as

cn =ane÷jPn, (8)

where a. is the amplitude weight and ft is a progressive phase shift between array

elements. If a.= 1, the array is a uniform array, and the sum becomes a geometric series

that can be reduced to the closed form

AF(*) = 1 i (9)

where #=kd cos 0+0. If 0=0, the direction of maximum radiation is perpendicular to

the axis of the array elements, and the beam is referred to as a broadside beam. The

pattern for a 10 element uniform array with d = X•2 is shown in Figure 5. If 0 =kd, the

direction of maximum radiation is in the direction of the array axis, and the beam is

referred to as an endfure beam [Ref. l:p. 218].

The advent of ferrite materials and high speed switching circuits have made

scanning radar arrays possible. By applying a progressive phase shift to equation 1, the

far field radiation pattern is shifted by an amount determined by the linear phase

variation across the array. The beam peak location 00 for the amount of phase shift P is

determined from
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j = - kd cos 0o (10)

Inserting this result into (7) and simplifying leads to

NAF(O)=El~e(1
R-i

where 00 is the desired scan angle. Broadside and endfire correspond to 0o=90 and 00=0

or 180 degrees, respectively. For radiation in a particular direction between 0 and 90

degrees, the appropriate phase f must be selected according to equation (10). The array

can then be made to scan in any desired direction, hence the term "phased array". [Ref.

1 :p.220]

An example of a radiation pattern for a 10 element uniform array scanned to 45

degrees is shown in Figure 6. For most radar applications, the scan is predominantly ±

60O from broadside. Furthermore, only radiation into one hemisphere is desired. To

achieve this, the linear array is placed above a ground plane. If the ground plane spacing

is properly chosen, the net effect is to leave the pattern above the ground plane

essentially unchanged and eliminate the radiation in the back hemisphere. Linear arrays

above a ground plane can be modelled as a planar array radiating in free space by the

method of images.[Ref. l:p. 137] The pattern for a 10 element uniform array over a

ground plane scanned to 45 degrees is shown in Figure 7. The gain will increase by a

factor of approximately 2 if the power into the antenna is kept the same, since all of the

power is confined to a single hemisphere. Current systems that employ phased array

17
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technology include the AEGIS AN/SPY-1 series of Naval Radars, the PATRIOT Air

Defense Weapons System, and the PAVE PAWS Early Warning Radar System.

The final array design parameter of interest is the interelement spacing, d. When

scanning an array, multiple directions of maximum radiation within the visible region

(0<<05180 degrees) may arise. These additional maxima are not desirable and are

referred to as grating lobes [Ref. 5:p. 114]. The choice of d influences

the number and location of these grating lobes. The grating lobes appear when 0 is an

even multiple of 2w. Accordingly, the locations of the grating lobes are given by

cos)9 co's 0 +-' (12)

m = 1,+2,-

To ensure that no grating lobes appear in the visible region requires that cos 0. > 1, and

thus the limitation on spacing becomes

d I + (13)

1 + IcosOo I

When 0. = 0, cos 00 =1 and when 00 = w, I cos 00 I = 1. Therefore if d < V/2, no

grating lobes will appear for any scan angle 00 [Ref. 6:p. 144].
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MI. MATHEMATICAL FORMULATION OF BEAM COUPLING

A. INTRODUCTION

An antenna can be modelled as a multiport junction with scattering parameters S,.

The S4 are computed from a knowledge of the beam radiation patterns. Once the beam

radiation patterns and the S, are known, the radiation efficiency can be determined by

solving a matrix eigenvalue equation. This solution technique will be specialized to the

case of a phased array antenna system. The model is based on the work of Stein [Ref.

2], and his notation will be used.

B. SCATTERING MATRIX FOR N-PORT NETWORKS

For electrical networks at low frequencies (f < 20 khz), the standard lumped

parameter circuit models work well in describing the behavior of the circuit. The circuit

can be described by voltages across and currents through each element. The voltages and

currents are related by the element impedances and admittances. However, relationships

for low frequencies are not valid for microwave frequencies, since the phase of the

electromagnetic wave may change significantly over the length of the

element.[Ref. 7:p.1] The lack of the standard circuit models at microwave

frequencies makes measurement of voltage and current extremely difficult. For this

reason, at microwave frequencies it makes more sense to work with the incident and

reflected fields in a network. The use of incident and reflected (or scattered) fields leads
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to an equivalent network formulation, called the scattering matrix representation.[Ref.

7 :p. 22 1] Scattering matrices mathematically describe the behavior of waves at each port

of a device. For an N-port network,

y1  Sl S12 ... s N X,

Y2  S21  S 2 ... S 2N x2  (14)

" SN, S. : .] "J

where y denotes an outgoing wave and x an incoming wave. The elements Sg are called

the scattering parameters of the device. In matrix form

y = Sx (15)

The SN are found by driving port j with an incident wave, and measuring the outgoing

wave at port i, with all other ports terminated in matched loads.

It is possible to visualize a multiple beam antenna as an N-port network consisting

of N input feeds and N output beams. If the network is reciprocal (as is usually the case

for most antennas that transmit and receive), the scattering matrix will be symmetric.

[Ref. 7 :p.224] The scattering matrix can be related to other matrix formulations, such

as the impedance or admittance matrix. As with the latter two, the scattering matrix

provides a complete representation of antenna performance[Ref. 7:p.223]. Figure 8 gives

a conceptual picture of a multiple beam antenna system represented as an N-Port

network.
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C. BEAM COUPLING FACTORS

Using the notation in Stein's paper [Ref. 2], and treating the antenna assembly as

an N-port network, the incident fields at each port are represented by the vector x, and

the reflected fields at each port are represented by the vector y. The Xk and the Yk are

related via the scatering matrix

Yk =•sIX. -(16)
Mal-

The incident waves give rise to far-field beam patterns and the far-field radiation patterns

are normalized using an autocorrelation integral over the spatial angular domain as

follows

f2" ff(e,*).i ,(o ~sinoded0 = 2rj° , (17)

where ik(S,#) is the beam pattern of the kl beam ,go is the impedance of free space

(120,r 0), and the * denotes complex conjugate. The electric fields are of the form

k, r (18)4%40,) = qkRk(O,0)• (IS)
r

The term qk is equivalent to the square root of the radiation efficiency and r is the

distance from the local antenna coordinate system origin to the observation point.
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The beam coupling coefficients are given by

= i,.(19)12%

The coupling coefficients possess symmetry in k and j (,6--=kj') and are a measure of

the beam overlap. Since the •k(o,) are vectors with complex components (i.e, each

having a magnitude and phase), it is nMt just the area common to the polar diagrams of

the multiple beams. The complete overlap of beams k and j implies •kj= 1; if fkj =0, the

beams are orthogonal. For uniform illumination, orthogonality occurs when beams cross

at approximately the 4 dB points.

Having established a measure of coupling, it is natural to investigate the

implications of conservation of energy. If the antenna system is treated as a linear

network, superposition can be used to compute the total radiated electric field.

t(o,$)= xkqkRk(0,4) . (20)

Using equation (16), the incident total power Pi is

k x(21)
k

=xt x

where the t indicates a conjugate transpose. Similarly the reflected power is

prey = xtstsx (22)

The total radiated power, P.d, is defined as
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P, = -If "f2r2xro A(o -(osinede• (23)

Appropriate substitution and simplification leads to an alternative expression for P.,

N N

=~~ X xqP,,qj,x
k-i -1I (24)

N N

k-1 J-1

Conservation of energy now requires that

Ph, 2 PW +P,,d(25)

where equality holds only if the network is purely lossless.

D. SPECIALIZATION TO AN ARRAY

1. COUPLING COEFFICIENTS

The adaptation of Stein's theory to linear arrays as presented here follows

original work documented in reference [8] [Ref. 8:p. 1]. The first step is

to determine the normalization constant for the k' beam in the array. The array element

spacing is d, and the amplitude distribution is given by the coefficients {a.). The

magnitude of the normalization constant for th ph beam is defined as

IAP[ 2kd E .a. aI,.e"d'p(.1 2 (26)

If m=n, I•=2kd; otherwise,
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I'm - 2 dk{sin[-(n - m) kdj)I} (27)

The beam coupling coefficients are computed using (19). Using the notation

in Chapter 2, the array factor is substituted for the beam pattern, Rk. Neglecting the

element factor will not have a significant effect if the radiating elements are well matched

over the range of beam scan angles. Thus,

is f tfkdApAq [ . (28)" 2 fo-kd kd.• -"{-P[•ap x-dtd

with Q(m) ={2m-(N+ 1)}/2. The a. and ak are the amplitude coefficients for the beams,

the up and uq are k times the phase shifts to scan the pP and q0 beams, and u is the z

direction cosine times k. Performing the integration and simplifying leads to the final

expression for the coupling coefficient

N-. N NSe 2 E E a,.a. eC""-",qt'l.,
rpq N N-1 X-i (29)

p- 1 N N Ii N *N ii
a arnni~n~j 2 a~a~eil' 3)

2. RADIATION EFFICIENCY AND COUPLING LOSS

The calculation of the beam coupling loss is based on conservation of energy.

Stein has shown that the problem can be cast into the form of a matrix eigenvalue

equation. From the results of section (C(l)), the conservation of energy equation can be

written as
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xtx > xtSlSx + xtJx (30)

Both of the matrices, r and SIS, are Hermitian and positive semidefinite. Thus, from

linear algebra, each has N positive real or zero eigenvalues. Each matrix also has a full

set of linearly independent eigenvectors. It is possible to construct a matrix, U, from the

normalized eigenvectors described above that will diagonalize F and StS. If U is used to

diagonalize r, the transformation is a similarity transformation and has the mathematical

form of

utru = y , (31)

where •y is a diagonal matrix. U is also a unitary matrix, since it has the mathematical

property

U = = , (32)

where I is the identity matrix.

Returning to the energy conservation equation, (30) can be transformed using

the matrix U. Let x =Uz; substitution of this result into equation (30) gives

ztz k zt utsts Uz + zt utr uz (33)

The transformation from x to z is equivalent to exciting the antenna with a new set of

voltages. Since x was arbitrary to start with, the new vector z represents an equally
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arbitrary set of voltages. Rewriting (33) gives

t(I - Y)z ?- zt(wtSt~ OZ (34)

in which UtStSU is also Hermitian and positive semidefinite.

The characteristic equation of (34) is

V - A =0 (35)

Most standard mathematical software packages contain routines that can efficiently solve

this eigensystem. The result is N eigenvalues (XIIX2,...,XN) that are related to the beam

efficiencies ( C1112, 1 q212 ___, I qN 2 ) by

1Yk Pkk (36)

Because jk = l by choice of normalization,

1 -(37)
Xk

Since I qkj2 < 1 from conservation of energy arguments, the upper bound on the

radiation efficiency is given by

Sx 1 * (38)

For the special case of identical beams, I ch I = I q2 I I qN I, the determinant

for the radiation efficiency factor becomes
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G -A) P12 ... PIN

l.21 (1-) 0.o (39)

PNPIN2 .. (1 -A

Using the symmetry of the coupling coefficients, allows the equation to be written as

0 21  (1-A) .. =0 (40)

PN1 PN2 ... (1-A.

The evaluation of the determinant analytically proceeds by cofactor expansion. Expanding

and collecting terms leads to the final result of

AN +A1AN-I +A2 Al-2 ÷... +AN_1 • +AN = 0 (41)

The largest root of this equation, X., is then substituted into (38) to obtain Iq. I2. The

detailed solution for four beams is given in Appendix B. The results from Appendix B

were used to verify the computer code which is based on the more general eigenvalue

solution of equations (35) through (38). Note that identical beams can only be achieved

where there is perfect symmetry, such as a circular array or a spherical array. However,

the beams away from the edges of a large cluster of beams can be considered

"approximately" identical.

30



IV. DATA SUMMARY

A. INTRODUCTION

The beam coupling loss data was computed for various amplitude weights applied

to the array to control beamwidth (hence crossover level) and sidelobes. The amplitude

weights used were

1. Uniform

2. Cosine on a 10 dB pedestal

3. Cosine on a 15 dB pedestal

4. Taylor (20 dB, n = 4)

5. Taylor (30 dB,n = 5)

6. Taylor (40 dB, n = 6)

These distributions were chosen because of their practical use in radar and

communication systems, and because of their ease of computer implementation.

MATLAB has a built- in routine to calculate uniform weights, the Cosine and Taylor

distributions were generated using author-created functions. Figure 9 shows samples of

the various amplitude windows.
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B. 2 BEAM DATA

This section presents the summary of data for the 2-beam array scenarios. The

complete raw data is presented in a set of tables located in Appendix A.

The data summary consists of parametric plots of the coupling loss. With two

simultaneous beams, the coupling loss is related to the crossover level through the

coupling coefficient (0) between the beams

q2 = 1 (42)

A plot of coupling loss vs crossover level for the 20 element array is shown in Figure

10. The plot contains the data for all six amplitude weightings. Figure 11 shows a similar

plot for a 100 element array.

C. 4 BEAM DATA

Following is a summary of data for the 4 beam array scenarios. The complete data

set is presented in tables located in Appendix A. As in the 2 beam case, the data

summary consists of plots of the coupling loss. With four simultaneous beams, the

coupling loss is related to the crossover level by

q2 1 (43)

where ý,. is the largest eigenvalue of the 0 matrix. Plots of radiation efficiency vs

crossover level for the 4 beam, 20 element array are shown in Figure 12. The plots
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contain the data for all six amplitude weightings, and the corresponding plot for a 100

element array is shown in Figure 13.

D. MULTIPLE BEAMS AND GAIN LOSS

One important result of multiple beam antenna research is the investigation of gain

loss due to beam coupling. According to Hansen, the gain for a linear array is

[Ref. 9:p. 20].

G - .1(144
N N

E a~a1,nc(n-m)kd

If the interelement spacing, d, is V/2, equation (44) reduces to

which can also be expressed as

G = N , (46)

where •, is the aperture efficiency (i.e., gain loss due to non-uniform amplitude weights).

This is the gain of an isolated lossless antenna with excitation coefficients {a.). (In

standard antenna terminology, equation (46) gives the directivity.) In practice, other

losses will further reduce the antenna efficiency. The losses include transmission line

losses, mismatches in the feed, and the coupling losses if multiple beams are formed.
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The overall antenna gain is determined by the product of the individual efficiencies.When

only tapering and beam coupling losses are considered for beam k

Gk = NTIa Jqk 12  .(47)

As an example, the aperture efficiency of a single beam array with a 30 dB Taylor

distribution is .8733. When a second beam is added with a 3 dB crossover level, there

is an additional .7258 reduction in gain. For N=20,

G = (20) (.8733) (.7258) = 12.67 (48)
= 11 dB

Thus the beam coupling loss is 1.39 dB. It is clear that any design incorporating multiple.

beam techniques must account for the coupling losses to assure proper antenna operation

from a systems perspective.

E. BEAM COUPLING LOSSES VS. NUMBER OF BEAMS

In the preceding sections, we have examined the effect of various antenna design

parameters such as sidelobe level and beamwidth on beam coupling losses. At this

juncture it is important to also investigate the effect of fixing design parameters and

determining the relationship between beam coupling losses and the number of beams. For

this investigation, only three scenarios will be investigated

1. Uniform Weighting

2. Cosine on a 10 dB Pedestal Weighting

3. Taylor 25 dB, n = 6 Weighting
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For each one of the amplitude weights listed, the beam coupling losses for each crossover

level were compared for the center beams. Figure 14 shows a graph of the coupling loss

versus the number of beams for a 25 dB Taylor distribution with a crossover level of 3

dB. The difference in coupling loss between the 2 beam case and the 6 beam case is less

than 0.9 dB. The results indicate that the addition of a beam has little or no effect if its

scan direction is greater than several beamwidths from the center beam. When this

condition is true, the new entries in the f matrix due to the added beam are small, and

the eigenvalues are primarily determined by the elements near the diagonal.
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V. CONCLUSIONS

Analysis of the data presented in this report supports several conclusions. These

conclusions are

1. For arrays, the pertinent loss equations are readily implemented and solved using
commercial software packages. Availability of these packages makes it possible
for personnel involved with array antennas (especially junior officers) to more
completely understand why the equipment behaves as it does. A more detailed
understanding of equipment performance translates to increased mission readiness
and improved program management.

2. Beam coupling losses are dependent upon the basic array antenna design
parameters and therefore must be traded off with beamwidth, sidelobe level, and
gain requirements.

3. The reduction in array gain observed when using multiple beam techniques varies
as a function of amplitude taper and crossover level, and is related to radiation
efficiency. The reduction is not overwhelming, in most cases, neither is it
insignificant.

4. The curves of the coupling loss vs crossover were distinctly different for low
sidelobe and uniform arrays.

5. Future research should examine planar arrays and include the effect of the
radiating element factor. The option of integrating the radiation patterns
numerically (rather than summing the aperture coefficients) should also be
considered.

Array antennas are in use throughout the radio frequency portion of the spectrum,

and recent printed circuit arrays operate at frequencies as high as 800 Gigahertz (GHz)

[Ref. 10]. Phased array technology will continue to grow in use due to its
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advantages in sidelobe suppression, scanning speed, and compactness. It is necessary to

understand the benefits and limitations of this technology if it is to be exploited to its full

potential.
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APPENDIX A - CALCULATED DATA

A. 2 BEAM DATA

TABLE 2. 2 BEAM UNIFORM - 20 ELEMENTS

Crossover Level (dB) A# , q2  q1 (dB)

0 0.0000 1.0000 0.5000 3.0103

1 4.7200 0.6064 0.6225 2.0585

2 6.6000 0.3251 0.7547 1.2225

3 8.0000 0.1263 0.8879 0.5165

4 9.1300 0.0099 0.9902 0.0428

5 10.1000 0.1022 0.9073 0.4226

6 10.9400 0. 1612 0.8612 0.6491

7 11.6500 0.1950 0.8368 0.7737

8 12.3200 0.2131 0.8243 0.8390

9 12.9100 0.2190 0.8203 0.8600

10 13.4200 0.2168 0.8218 0.8522

44



TABLE 3. 2 BEAM UNIFORM - 100 ELEMENTS

Crossover Level (dB) q2 (dB)

0 0 1.0000 0.5000 3.0103

1 0.9540 0.5979 0.6258 2.0356

2 1.3321 0.3136 0.7613 1.1846

3 1.6022 0.1212 0.8919 0.4967

4 1.8183 0.0099 0.9902 0.0428

5 2.0164 0.1046 0.9053 0.4322

6 2.1785 0.1613 0.8611 0.6493

7 2.3226 0. 1950 0.8368 0.7738

8 2.4487 0.2118 0.8252 0.8345

9 2.5568 0.2172 0.8216 0.8536

10 2.6650 0.2147 0.8232 0.8448
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TABLE 4. 2 BEAM COSINE (10 dB PEDESTAL) - 20 ELEMNTS

Crossover Level (dB) 0 4 cqe (dB)

0 0 1.0000 0.5000 3.0103

1 5.5700 0.7050 0.5865 2.3172

2 7.8200 0.4889 0.6716 1.7287

3 9.5200 0.3307 0.7515 1.2408

4 10.8800 0.2182 0.8209 0.8572

5 12.0800 0. 1367 0.8797 0.5565

6 13.1300 0.0792 0.9266 0.3310

7 14.0500 0.0399 0.9616 0.1699

8 14.8900 0.0133 0.9869 0.0574

9 15.6600 0.0043 0.9957 0.0186

10 16.3500 0.0152 0.9850 0.0655

46



TABLE 5. 2 BEAM COSINE (10 dB PEDESTAL) - 100 ELEMENTS

Crossover Level (dB) # e qe (dB)

0 0 1.0000 0.5000 3.0103

1 1.0981 0.6967 0.5894 2.2960

2 1.5482 0.4709 0.6799 1.6757

3 1.8723 0.3134 0.7614 1.1840

4 2.1425 0. 1987 0.8342 0.7872

5 2.3587 0.1225 0.8909 0.5017

6 2.5568 0.0663 0.9378 0.2789

7 2.7370 0.0271 0.9736 0.1160

8 2.8992 0.0011 0.9989 0.0046

9 3.0434 0.0151 0.9851 0.0652

10 3.1696 0.0244 0.9761 0.1049
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TABLE 6. 2 BEAM COSINE (15 dB PEDESTAL) - 20 ELEMES

Crossover Level (dB) A q2 (dB)

0 0 1.0000 0.5000 3.0103

1 5.9300 0.7216 0.5809 2.3593

2 8.3500 0.5136 0.6607 1.8001

3 10.1500 0.3603 0.7351 1.3363

4 11.6400 0.2477 0.8015 0.9611

5 12.9300 0.1648 0.8585 0.6625

6 14.0500 0. 1052 0.9048 0.4344

7 15.0600 0.0628 0.9409 0.2645

8 15.9900 0.0320 0.9690 0. 1368

9 16.8200 0.0113 0.9888 0.0488

10 17.5900 0.0030 0.9970 0.0130

48



TABLE 7. 2 BEAM COSINE (15 dB PEDESTAL) - 100 ELMENTS

Crossover Level (dB) q qe (dM)

0 0 1.0000 0.5000 3.0103

1 1.0981 0.7092 0.5851 2.3279

2 1.5482 0.5050 0.6645 1.7754

3 1.8723 0.3446 0.7437 1.2858

4 2.1425 0.2374 0.8082 0.9249

5 2.3587 0.1525 0.8677 0.6165

6 2.5568 0.0934 0.9146 0.3877

7 2.7370 0.0541 0.9487 0.2287

8 2.8992 0.0237 0.9769 0. 1015

9 3.0434 0.0034 0.9966 0.0148

10 3.1696 0.0080 0.9920 0.0348
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TABLE 8. 2 BEAM TAYLOR 20 dB = 4 - 20 ELEMENTS

Crossover Level (dB) U"q 2 (dB)

0 0 1.0000 0.5000 3.0103

1 5.1900 0.6787 0.5957 2.2497

2 7.2900 0.4481 0.6906 1.6080

3 8.8600 0.2864 0.7774 1.0938

4 10.1300 0.1747 0.8513 0.6993

5 11.2100 0.0997 0.9093 0.4127

6 12.1900 0.0488 0.9535 0.2069

7 13.0400 0.0175 0.9828 0.0753

8 13.7900 0.0010 0.9990 0.0043

9 14.5000 0.0109 0.9892 0.0471

10 15.1300 0.0146 0.9856 0.0629
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TABLE 9. 2 BEAM TAYLOR 20 dB n =4- 100 ELEMENTS

Crossover Level (dB) A# 0 q2  q2 (dB)

0 0 1.0000 0.5000 3.0103

1 1.0441 0.6758 0.5967 2.2423

2 1.4582 0.4493 0.6900 1.6117

3 1.7643 0.2923 0.7738 1.1136

4 2.0164 0.1835 0.8450 0.7316

5 2.2326 0.1101 0.9008 0.4536

6 2.4307 0.0605 0.9429 0.2552

7 2.5929 0.0325 0.9685 0.1390

8 2.7370 0.0165 0.9838 0.0711

9 2.8812 0.0080 0.9921 0.0344

10 3.0074 0.0057 0.9943 0.0249
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TABLE 10. 2 BEAM TAYLOR 30 dB 5n = -20 ELEMENTS

Crossover Levd (dB) A# 0 4q(dB)

0 0 1.0000 0.5000 3.0103

1 5.8200 0.7268 0.5791 2.3724

2 8.1800 0.5254 0.6556 1.8338

3 9.9500 0.3777 0.7258 1.3915

4 11.4200 0.2689 0.7881 1.0343

5 12.6900 0.1891 0.8410 0.7522

6 13.7900 0.1319 0.8835 0.5381

7 14.8000 0.0902 0.9173 0.3751

8 15.7100 0.0602 0.9432 0.2539

9 16.5400 0.0391 0.9624 0.1666

10 17.3100 0.0239 0.9767 0.1026
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TABLE 11. 2 BEAM TAYLOR 30 dB n = 5-100 ELEMENTS

Crossover Level (dB) q q 2 (dB)

0 0 1.0000 0.5000 3.0103

1 1.0441 0.7329 0.5771 2.3879

2 1.4582 0.5415 0.6487 1.8794

3 1.7643 0.3969 0.7158 1.4518

4 2.0164 0.2937 0.7300 1.1182

5 2.2326 0.2114 0.8255 0.8330

6 2.4307 0. 1571 0.8642 0.6338

7 2.5929 0.1164 0.8957 0.4782

8 2.7370 0.0866 0.9203 0.3607

9 2.8812 0.0651 0.9388 0.2740

10 3.0074 0.0482 0.9540 0.2044
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TABLE 12. 2 BEAM TAYLOR 40 dB 6 - 20 ELEMENTS

Crossover e,eve (dB) Aq q (dB)

0 0 1.0000 0.5000 3.0103

1 6.3500 0.7463 0.5726 2.4212

2 8.9300 0.5557 0.6428 1.9193

3 10.9000 0.4103 0.7091 1.4931

4 12.5200 0.3024 0.7678 1.1474

5 13.9200 0.2212 0.8189 0.8679

6 15.1700 0.1604 0.8618 0.6461

7 16.3100 0.1143 0.8974 0.4700

8 17.3500 0.0802 0.9258 0.3350

9 18.2900 0.0549 0.9480 0.2321

10 19.1700 0.0362 0.9651 0.1544
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TABLE 13. 2 BEAM TAYLOR 40 dB 6 6- 100 ELEMENT

Crossover Level (M) A# q2 (de()

0 0 1.0000 0.5000 3.0103

1 1.0441 0.7526 0.5706 2.4369

2 1.4582 0.5701 0.6369 1.9594

3 1.7643 0.4312 0.6987 1.5570

4 2.0164 0.3217 0.7566 1.2112

5 2.2326 0.2459 0.8026 0.9549

6 2.4307 0.1853 0.8437 0.7383

7 2.5929 0.1381 0.8786 0.5619

8 2.7370 0.1022 0.9073 0.4227

9 2.8812 0.0776 0.9280 0.3245

10 3.0074 0.0574 0.9458 0.2422
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B. 4 BEAM DATA

TABLE 14. 4 BEAM UNIFORM - 20 ELEMENTS

r Cro ssover (dB) 0 4 A#142 0,33 AOI-34 10. A,01- q ' (M B)

0 1.00 0 1.00 0 1.00 0 6.02 0.25

1 0.61 9.48 -0.05 19.22 -0.20 29.59 2.76 0.53

2 0.33 13.29 -0.22 27.38 0.09 43.62 1.37 0.73

3 0.13 16.16 -0.12 33.83 0.11 56.62 0.51 0.89

4 -0.01 18.50 0.01 39.39 -0.01 72.16 0.13 0.97

5 -0.10 20.52 0.10 44.52 -0.09 91.85 1.13 0.77

6 -0.16 22.30 0.13 49.38 -0.09 94.81 1.49 0.71

7 -0.19 23.83 0.12 53.90 -0.04 97.19 1.61 0.69

8 -0.21 25.25 0.09 58.57 0.02 99.29 1.55 0.70

9 -0.22 26.53 0.05 63.31 0.06 101.08 1.43 0.72

10 -0.22 27.67 0.02 69.23 0.08 102.60 1.31 0.74

"01-2 = 0 2-3 = 3,

2. & 2 = &02.3 =

1 13= 02-4
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TABLE 15. 4 BEAM UNIFORM - 100 ELEMEN

Crossover (dB) #,' A01-2 a A- 4' Ot4 A04 q2(dB) q2

0 1.000 0 1.000 0 1.000 0 6.02 0.250

1 0.598 1.908 -0.056 3.819 -0.192 5.734 2.72 0.534

2 0.314 2.665 -0.215 5.336 0.092 8.018 1.31 0.740

3 0.121 3.206 -0.114 6.421 0.103 9.658 0.51 0.890

4 -0.010 3.638 0.010 7.292 -0.010 10.975 0.13 0.971

5 -0.105 4.035 0.097 8.091 -0.086 12.188 1.13 0.771

6 -0.161 4.360 0.128 8.746 -0.081 13.184 1.50 01708

7 -0.195 4.649 0.120 9.329 -0.033 14.073 1.58 0.695

8 -0.212 4.902 0.090 9.840 0.020 14.854 1.52 0.704

9 -0.217 5.119 0.054 10.279 0.055 15.525 1.41 0.722

10 -0.215 5.336 0.014 10.718 0.071 16.199 1.27 0.746

0I1-2 -= 12-3 0 33-4

2. O 2  = 1602 -3 = A3 -

0 13 = 024

4 A01-2 = A-023
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TABLE 16. 4 BEAM COSINE (10 dB PEDESTAL) - 20 ELEMENTS

Crossover (dB) 01.21 &41.22  al- 3 3 014 & 14 q2(dB) q2

0 1.00 0 1.00 0 1.00 0 6.00 0.25

1 0.70 11.20 0.20 22.85 -0.02 35.62 3.67 0.43

2 0.49 15.79 -0.01 32.96 0.01 54.70 2.52 0.56

3 0.33 19.30 -0.02 41.38 0.01 82.52 1.80 0.66

4 0.22 22.19 -0.00 49.05 -0.01 94.62 1.31 0.74

5 0.14 24.74 0.01 56.82 -0.01 98.54 0.92 0.81

6 0.08 27.02 0.01 65.31 0.00 101.74 0.56 0.88

7 0.04 29.06 0.01 76.26 0.01 104.39 0.32 0.93

8 0.01 30.93 0.00 91.01 0.01 106.66 0.09 0.98

9 -0.00 32.66 -0.01 92.82 -0.00 108.64 0.04 0.99

10 -0.02 34.26 -0.01 94.39 -0.01 110.37 0.09 0.98

Notes:

2,A = &2-3  = &3.4

2"A1. -•A• 2.3 -- A•i3.4,

3,0 1-3 =- 024

4.A 01.3 = 4#2-4
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TABLE 17. 4 BEAM COSINE (10 dB PEDESTAL) - 100 ELEMENTS

Crossover (d0) #,.2' 01, 2
2  ft 1.3 A3,,.34  1.4  1&0,4 q2 (dB) q2

0 1.000 0 1.000 0 1.000 0 6.02 0.250

0.697 2.197 0.178 4.396 -0.030 6.603 3.58 0.438

2 0.471 3.098 -0.020 6.204 0.015 9.329 2.42 0.572

3 0.313 3.747 -0.025 7.510 0.007 11.305 1.72 0.673

4 0.198 4.288 0.002 8.600 -0.013 12.962 1.20 0.758

5 0.123 4.721 0.016 9.475 -0.010 14.296 0.83 0.826

6 0.066 5.119 0.018 10.279 0.003 15.525 0.51 0.889

7 0.027 5.480 0.011 11.012 0.011 16.649 0.24 0.946

8 0.001 5.806 0.001 11.673 0.009 17.667 0.04 0.991

9 -0.015 6.096 -0.007 12.261 0.002 18.576 0.08 0.982

10 -0.024 6.349 -0.012 12.778 -0.004 19.375 0.13 0.970

Notes:

"1 1-2 = 2-3= 0334

2. A01.2 = A0 2 -3 = A034

3.031-3 = -3-24

4. A- 1.3 = A-24
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TABLE 18. 4 BEAM COSINE (15 dB PEDESTAL) - 20 ELEMENTS

Crossover (dB) 61.2' A-0.2 4 ?'6,4 A01-4 (dB) qe

0 1.00 0 1.00 0 1.00 0 6.02 0.25

1 0.72 11.93 0.23 24.42 -0.01 38.33 3.77 0.42

2 0.51 16.87 0.01 35.49 -0.00 60.56 2.68 0.54

3 0.36 20.64 -0.02 44.83 0.01 "92.05 1.94 0.64

4 0.25 23.79 -0.01 53.78 -0.00 97.13 1.43 0.72

5 0.16 26.57 0.00 63.47 -0.00 101.14 1.02 0.79

6 0.11 29.06 0.01 76.26 0.00 104.39 0.71 0.85

7 0.06 31.31 0.01 91.41 0.00 107.10 0.46 0.90

8 0.03 33.44 0.00 93.59 0.00 109.49 0.22 0.95

9 0.01 35.36 0.00 95.43 -0.00 111.51 0.09 0.98

10 0.00 37.19 -0.00 97.09 -0.00 113.32 0.00 1.00

Notes:

1. 01-2 -= 12-3 - 133-4

2. A01.2 = A&2.3 = &34

1 01-3 = 24

4. A01.3 = A&4
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TABLE 19. 4 BEAM COSINE (15 dB PEDESTAL) - 100 ELEMENTS

Crossover (0) 61.2'A-0142 f 3 &0 1 3
4  

14 &0 1 -4  qdB) q

0 1.000 0 1.000 0 1.000 0 6.02 0.250

1 0.709 2.341 0.205 4.685 -0.017 7.038 3.68 0.429

2 0.505 3.242 0.003 6.494 0.002 9.767 2.60 0.549

3 0.345 3.963 -0.024 7.945 0.005 11.967 1.87 0.650

4 0.237 4.505 -0.009 9.037 -0.004 13.628 1.38 0.727

5 0.153 5.010 0.005 10.060 -0.005 15.189 0.97 0.800

6 0.093 5.444 0.009 10.938 0.003 16.537 0.64 0.862

7 0.054 5.806 0.007 11.673 0.004 17.667 0.40 0.913

8 0.024 6.168 0.003 12.409 0.002 18.804 0.18 0.960

9 0.003 6.494 -0.002 13.073 -0.001 19.834 0.02 0.996

10 -0.008 6.748 -0.004 13.591 -0.002 20.640 0.04 0.990

Notes:

" •1-2 = 2-3 = 3-4

2. A1-2 = A02-3 = A034

3 , 0 1-3 := 0 2 4
A 031.3 = 102-4
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TABLE 20. 4 BEAM TAYLOR 20 dB 4 = 4-20 ELEMET

Crossover (dM) #,.a A# 21 - A#3' 01. A0 j q2(dM) q2

0 1.00 0.04 1.00 0.07 1.00 0.11 6.02 0.25

1 0.68 10.43 0.15 21.22 -0.01 32.88 3.47 0.45

2 0.45 14.70 -0.01 30.51 0.04 49.60 2.37 0.58

3 0.29 17.93 0.01 38.01 -0.01 67.46 1.67 0.68

4 0.17 20.60 0.04 44.73 -0.06 91.99 1.13 0.77

5 0.10 22.89 0.04 51.06 -0.04 95.74 .76 0.84

6 0.05 24.98 0.02 57.61 0.00 98.89 .41 0.91

7 0.02 26.82 -0.00 64.46 0.04 101.47 .18 0.96

8 -0.00 28.48 -0.03 72.51 0.04 103.66 .22 0.95

9 -0.01 30.05 -0.05 90.06 0.02 105.61 .32 0.93

10 -0.01 31.48 -0.06 91.59 0.00 107.30 .27 0.94

Notes:

01. 12 =02.3 = 3-4

2. k1-2 = &,2_3 =&,3

. f01 .3 =: 02.4

4A03 = A2
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TABLE 21.4 BEAM TAYLOR 20 dB 4 = 4-100 ELEMENTS

Crossover (dB) 1,.,2  ' A0,2 j6 -3 4  AA,- q4 (dB) q2

0 1.000 0.036 1.000 0.072 1.000 0.108 6.02 0.25

1 0.676 2.089 0.157 4.180 0.008 6.27 3.47 0.45

2 0.449 2.917 0.007 5.842 0.060 8.782 2.44 0.57

3 0.292 3.530 0.029 7.074 -0.011 10.645 1.74 0.67

4 0.184 4.035 0.058 8.091 -0.063 12.188 1.25 0.75

5 0.110 4.469 0.058 8.965 -0.044 13.517 0.86 0.82

6 0.061 4.866 0.032 9.767 0.005 14.742 0.51 0.89

7 0.033 5.191 0.000 10.425 0.034 15.750 0.27 0.94

8 0.017 5.480 -0.028 11.012 0.038 16.650 0.18 0.96

9 0.008 5.770 -0.051 11.600 0.022 17.553 0.22 0.95

10 0.006 6.023 -0.062 12.114 -0.002 18.348 0.27 0.94

Notes:

01- 2 = 2-3 = 3-4

2A1.2 = A'U0.3 = A04

4 A01-3 = A02-4
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TABLE 22.4 BEAM TAYLOR 30 dB W = 5 - 20 ELEMEN

Crossover (dB) a141  A01.2  111-3 3 AA31 4 qA (dB) q2

0 1.00 0 1.00 0 1.00 0 6.02 0.25

1 0.73 11.71 0.25 23.95 0.02 37.51 3.87 0.41

2 0.53 16.54 0.04 34.70 -0.01 58.64 2.76 0.53

3 0.38 20.22 -0.00 43.72 -0.01 91.32 2.08 0.62

4 0.27 23.32 -0.01 52.34 -0.01 96.41 1.55 0.70

5 0.19 26.05 -0.01 61.45 0.00 100.42 1.14 0.77

6 0.13 28.48 -0.01 72.51 0.01 103.66 0.81 0.83

7 0.09 30.72 -0.01 90.78 0.00 106.41 0.56 0.88

8 0.06 32.79 -0.01 92.95 -0.01 108.79 0.36 0.92

9 0.04 34.70 -0.01 94.81 -0.01 110.83 0.22 0.95

10 0.02 36.51 -0.01 96.49 -0.01 112.66 0.13 0.97

-2 = 02-3 = 03-4

S21-3 = 132.4

4- A1-3 = A0 2 -4
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TABLE 23.4 BEAM TAYLOR 30 dB W = 5 - 100 ELEMENTS

Crossover (dB) #,24' A01.2 2 #,.3 A, 1.O 4 0,., A01-4 q2(dB) 42

0 1.000 0 1.000 0 1.000 0 6.02 0.250

1 0.733 2.377 0.270 4.758 0.042 7.147 3.89 0.408

2 0.542 3.314 0.067 6.639 -0.001 9.987 2.87 0.516

3 0.397 4.035 0.016 8.091 -0.010 12.188 2.18 0.605

4 0.294 4.613 0.004 9.256 -0.003 13.962 1.69 0.677

5 0.211 5.155 -0.003 10.352 0.007 15.637 1.27 0.746

6 0.157 5.589 -0.008 11.232 0.007 16.988 0.97 0.800

7 0.116 5.987 -0.010 12.040 0.000 18.234 0.72 0.848

8 0.087 6.349 -0.009 12.778 -0.006 19.375 0.54 0.884

9 0.065 6.675 -0.006 13.443 -0.007 20.409 0.40 0.911

10 0.048 7.001 -0.002 14.110 -0.004 21.450 0.32 0.930

Notes:

I. I 1-2 = 0l2-3 = 3-4

2. A -0 1- = A .2-3 = 1& 4

31,-3 = 02-4

4. A1-3 = A024
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TABLE 24. 4 BEAM TAYLOR 40 dB n = 6 - 20 ELEMENTS

Crossover (dB) . A0,.2 #,.3 At,1-, 114 AO1 -4  q3 (dB) q

0 1.00 0 1.00 0 1.00 0 6.02 0.25

1 0.75 12.78 0.29 26.25 0.03 41.57 3.98 0.40

2 0.56 18.08 0.06 38.37 -0.01 68.62 2.92 0.51

3 0.41 22.23 -0.00 49.16 -0.01 94.69 2.22 0.60

4 0.30 25.69 -0.01 60.12 -0.01 99.91 1.67 0.68

5 0.22 28.77 -0.01 74.28 -0.00 104.02 1.31 0.74

6 0.16 31.56 -0.01 91.68 -0.00 107.39 0.97 0.80

7 0.11 34.17 -0.01 94.31 -0.00 110.28 0.71 0.85

8 0.08 36.60 -0.01 96.57 -0.00 112.75 0.51 0.89

9 0.05 38.88 -0.01 98.54 -0.00 114.90 0.36 0.92

10 0.04 41.04 -0.01 100.28 -0.00 116.80 0.22 0.95

* J61-2 = 02-3 = (3-4

2, = A02-3 = &03

4. A61.3 = (02.4
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TABLE 25. 4 BEAM TAYLOR 40 dB W = 6 - I00 ELEmE s

Crossover (dB) #I.-' A0,. #1,3 3 #0.4 A01-4 q2(dB) q2

0 1.000 0 1.000 0 1.000 0 6.02 0.250

1 0.753 2.629 0.306 5.263 0.054 7.909 4.01 0.397

2 0.570 3.675 0.085 7.364 -0.003 11.085 3.01 0.500

3 0.431 4.469 0.018 8.965 -0.002 13.517 2.36 0.584

4 0.322 5.155 -0.000 10.352 -0.000 15.637 1.82 0.658

5 0.246 5.697 -0.003 11.452 -0.001 17.327 1.44 0.717

6 0.185 6.204 -0.003 12.483 -0.002 18.918 1.13 0.771

7 0.138 6.675 -0.002 13.443 -0.002 20.409 0.87 0.819

8 0.102 7.110 -0.001 14.333 -0.001 21.798 0.66 0.859

9 0.078 7.473 -0.001 15.077 0.000 22.966 0.51 0.889

10 0.057 7.836 -0.000 15.824 0.001 24.144 0.39 0.915

1' 01-2 = 02-3 = 03-4

2. A01-2 = A&2-3 = &3-4

1 01-3 = 02-4

4. A&'0.2 -= &02.3
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APPENDIX B. 4 BEAM RADIATION EFFICIENCY

This Appendix describes the radiation efficiency calculation for the case of 4

identical beams. For 4 beams, the determinant for the radiation efficiency factor becomes

(1-1.) 0•12 P13 0•14

021 (1I-;.) P23• [24 = 0 (49)

P31  P32  (1 -) ()34

P 4 1  P 4 2  P43 (1-X))

Recalling the symmetry of the coupling coefficients, this determinant can be written as

(1 -;) P2 P; :

P21  (1-;,) P3 2  P42  =0 (50)

P31  P32  (1-;A) PZ

P41  P42  P43  (1-A)

The evaluation of the determinant analytically proceeds by cofactor expansion. Expanding

and collecting terms leads to the final result of

A.4_4A3 + (6-_10/L2 +2(K-A-2)A +(2A+D+I) = 0 (51)

The following definitions are made to simplify the expression:
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P = 0342 041 Y = P32 043 P

8= 211 32 P3*1 e = P43 P31 P41 (52)

0310=~i42 P;2 P:I( o= P21 P42 P3 P43

P =P21 32 P43 I41

K I P1312+ 1 P3212 + I p4212 + I P21112+ 11P31l2 + IIP4112 (53)

C = IP2121 p143 12 + I p42 121P3112 + IP32 121 P4112

A = Re[P. +Re[y] +Re[8] +Re[e]
B = Re[q] +Re[p] +Re[o] (54)
D = C-2B

Since the coefficients of the fourth order polynomial obtained in (33) are real, the

Fundamental Theorem of Algebra guarantees exactly four complex roots. Additionally,

the roots of the polynomial correspond to the eigenvalues of the beam coupling matrix.

Since the matrix is Hermitian, all eigenvalues (and therefore the polynomial roots) are

guaranteed to be real. The largest root (dominant eigenvalue) is substituted into equation

(38) to obtain the maximum radiation efficiency for the system.
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APPENDIX C. COMPUTER SOURCE CODE

A. INTRODUCTION

The MATLABm (Matrix Laboratory) software package by The MathWorks© offers

efficient implementation of the equations describing the coupling interactions and

radiation efficiency. Since it is a programming language based on vector/matrix

manipulation, it is fairly straightforward to enter the desired array coefficients, and have

the computer calculate the solution. Additionally, many built in routines provide

flexibility without the necessity of laboring to produce FORTRAN or PASCAL code.

These features allow the programmer to concentrate primarily on the behavior and

performance of the algorithm. The matrix nature of MATLAB also allows more efficient

computation when data are presented in vector format. Acceptable throughput rates were

obtained on a 386SX personal computer with an installed math co-processor.

For this thesis, the computer coding proceeded in a modular fashion. Principal

tasks were coded as functions, with the main procedure calling the functions through

arguments. Functions written included

1. Cosine on a Pedestal amplitude weight generator.

2. Taylor amplitude weight generator.

3. Beam coupling loss generator.

4. Array Pattern function
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The source code for these functions is included in this Appendix. These functions were

the principal calculational tools utilized in computing the raw data. Sufficient

documentation is included within the function M-Files to allow straightforward analysis

of program flow.

B. MATLAB SOURCE CODE

1. COSINE ON A PEDESTAL AMPLITUDE WEIGHTS

function y = cospedwn(N,p)
% function Y=COSPEDWN(N,p)

% This function calculates amplitude weights for a cosine on a pedestal
% window. The input arguments is the number of array elements, (N) and
% the pedestal size in dB. The function returns the amplitude coefficients.

clg;
ped=l10.(-p/20)
I1--- 1: N;

Ad-2*0-1)/(N-l) -1;
y =(((l-ped)*abs(cos(xl*pi/2))) + ped).';

2. TAYLOR AMPLITUDE WEIGHTS

function a =taylor(slr,n bar, N)

% function a=TAYLOR(ulr,n bar, N)

% This function calculates amplitude weight coefficients for an
% n element array based on a Taylor amplitude distribution. The
% input arguments are the desired main lobe - side lobe ratio (dB),
% the sidelobe parameter n.bar, and the number of array elements.

% The output variable is the amplitude weights an.
% The procedure is outlined in the text * The Handbook of Antenna
% Design (vol 2)" edited by A.W. Rudge, K. Milne, A.D. Olver, and
% P. Knight.

clg;
p-n_bar-l;
dbamp=20/log(10);
sll =exp(abs(slr)/dbamp); % Calculate sidelobe level as a ratio
A= (1/pi)*log(sUl+ sqrt(sll.'2-!)); % Generate intermediate parameters
sigma= -n bar/(sqrt(A.^2 + (n.bar-l/2).^2));
f- ones(p, 1);

% Begin calculation of amplitude weights
for m- I:p
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z(m) = sigma*sqrt(A."2++(m-1/2).2);
K(m) =(fadt(p)).'2 ./ (fact(p +m) .*factp-m));

end

for n= l:p
P(n) =prod(l-(n.'2 ./ z.ý2));

end
ffK.*P;
J =zeros(N!2,p);
for if=l :N/2

for k= 1:p

end
end
g= 1 +2*sum(J.');
% Only 1/2 of the coefficients need to be calculated due to symmetry
a= [fliplr(g) gJ.';
a=almax(a); % Normalize the amplitude to max of 1

3. BEAM COUPLING LOSS CALCULATOR

function beta = couploss(N,crossivl,win)

% function beta= COUPLOSS(N,crosalvl,win)
% This function calculates coupling losses for overlapping beams
% in a multiple beam antenna. The multiple beams are generated using
% a linear array with various choices for amplitude windows.
% A switch parameter is used to choose the amplitude weighting as follows
% win = = I Rectangular window
% win = 2 Cosine on a pedestal (Pedestal size is input)
% win - = 3 Taylor (Sidelobe level and nbar are input)

clg;
% Initialize parameters
dB=crosslvl;
kf2*pi;
dff=.5;

kd = k'd;
zeta=(N+ 1)/2;

% Get amplitude coefficients
if win =f= I

aI =boxcar(N);
a2f=iaI.';

elseif win = = 2
p=. 3 19 9 ;
a I = cospedwn(N,p);
a2=al.';

elseif win = f 3
slrf20;
n..bar=4;
a I =taylor(slr, n-bar, N);
a2fal .';

end
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%Get crossover squint angles
level =O1 .^(-d920);
u =0;
xi=l1;
delta u=l1/10000;
a =alI(N/2 + 1: N).';
M= l:N/2;
Max=a*ones(IO, 1) +a*ones(l0, 1);

while xi > = level
*u=u+delta u;

zi =a*OXPOj(2*m-l)I2*kd*u).';
z2=a*exp(..j*(2*m..l)12*kd*u).';
xi= I/Max*(zl +z2);

end
u~squint=u;
crossover-des = level;
crossover camp = xi;

%Initialize scan angles and sums
up = kd~u squint;
uq=-kd~u squint;
du=uq-up;
dtheta=(&cos(du/kd)YISO0/pi;

% Set up matrices and calculate summnations
Al =&la2;
1= zeros(N,N);
ZI =0;Z2=0;Z3=0;
for m= I:N

for n= I:N
if n= =m

l(m,n) =2*kd;
Zi =ZI +Al(m,n).*I(m,n).*exp(-j~mdu);
Z2=Z2+Al (m,n).*I(m,n).*expG*O);
Z3 =Z3 +AI(m,n).*I(m,n)*exp6*O);

else

ZI =Z1 + Al(m,n).*I(m,n).*expo*(up*m-uq~n));
Z2=Z2+ Al(m,n).*l(m,n).*expo*up*(m-n));
Z3 =Z3 +Al(m,n).*T(rn,n).*expo*uq*(m-n));

end
end

end
% Calculate coupling coefficient here
ex- 1 .expOjzetadu);
X ex. 5 Z1;

b=X.IY;
beta=abs(b);

4. ARRAY PATTERN FUNCTION

function x=arrpAt(a,psi~primel ,n)

% X=ARRPAT(s,psiyprimel,n)

% This function calculates the far-field array pattern for a
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% linear array. Input arguments are the amplitude weight coefficients
% the desired steering angle off broadside, and the number of elements.
% The interelemest spacing is automatically assumed to be lambda/2.

cig;
if psijprimel < - 90 % Refer steering angle to broadside.

pail =(pi/2) - psi_primel*(pi/l80);
else

pail =psiprimel*(Pi/l80);
end
U,kl =size(a);

ifj > k
*a~l.';

end
lambda= 1; % Normalize wavelength
k=2*pi/lambda;
d=lambda/2; % Interelement spacing
kd-=k*d;
phil = -kd*cos(psil); % Generate phase shift terms to steer the

% beam.
if rem(n,2) - = 0

z=-(n-l)/2"(n-l)/2;
else

z=linspace(-n/2,n/2,n);
end
psi= linspace(0,2*pi,256);
el =exp(jezphil); % Phase weighting terms
se-size(el);

% Generate amplitude and phase weighted terms
al=a(n/2+1:n);
Xl =zeros(256,n/2);
for 1= 1:256

for z = l:n/2
X I(l,z) = (a I (:,z).*cos(kd.*cos(psi(I)).*(2"z-l)/2 + ((2*z- 1)/2.*phi 1)));

end
end
ml =2*abs(sum(XI .')); % Sum the elements to get the array factor
x-ml/max(ml);
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